GAS LAWS AND THE BEHAVIOR OF GASES:

<u>STP</u>: Standard Temperature and Pressure is defined as **760 Torr = 1 atm** @ 0° C.

MEASUREMENT OF PRESSURE: Remember, 101.3kPa(kilopascals) = 1013 mbar = 760 mm of Hg = 760 **Torr**.(Torr is named after Torricelli.) Also, 1000 mbar = 750 mm of Hg. Also, 1 atmosphere(atm) = 760 Torr.

MODIFIED AVOGADRO'S PRINCIPLE: One mole of any gas will occupy **22.4** Liters (22400 cm³) at STP. In fact, if the temperature and pressure of a gas are fixed, one mole of any gas will occupy the same volume.

BOYLE'S LAW: PV = k where P = pressure, V = volume, and k = constant.

(The temperature of the gas must be constant.)

<u>CHARLES' LAW</u>: $\frac{V}{T} = k$ where $T = \text{temperature}(K^{\circ})$ and k = constant.

(The pressure of the gas must be constant.)

<u>GAY-LUSSAC'S LAW</u>: $\frac{P}{T} = k$ where P = pressure, $T = \text{temperature}(K^{\circ})$, and

 \mathbf{k} = constant. (The volume of the gas must be constant.)

COMBINED CHARLES' AND BOYLE'S LAW: $\frac{PV}{T} = k$

<u>DALTON'S LAW</u>: In a closed container, the total pressure of two or more gases mixed together is the sum of the pressures of each gas.

<u>IDEAL GAS EQUATIONS</u>: PV = nRT where n = the number of moles of gas and R = a special constant = $.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}^{\circ}$, 83.1 cm³·bar/mol·K°, or

8.31 L·**kPa/mol·K**°. Also note that $PV = \frac{mRT}{M}$ where m = mass of the gas and M = molecular weight of the gas.

GRAHAM'S LAW: $\frac{V_1}{V_2} = \sqrt{\frac{m_2}{m_1}}$ = rate of diffusion where the temperature and

pressures of the two gases are the same. The kinetic energies of the gases are the same. V = velocity. Note that kinetic energy is energy of motion; i.e., if something is moving, then that object has kinetic energy. The above equation comes from an equation in physics which states that kinetic energy = $\frac{1}{2}mv^2$.